On operators preserving James’ orthogonality
نویسندگان
چکیده
منابع مشابه
A characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کاملOn Approximate Birkhoff-James Orthogonality and Approximate $ast$-orthogonality in $C^ast$-algebras
We offer a new definition of $varepsilon$-orthogonality in normed spaces, and we try to explain some properties of which. Also we introduce some types of $varepsilon$-orthogonality in an arbitrary $C^ast$-algebra $mathcal{A}$, as a Hilbert $C^ast$-module over itself, and investigate some of its properties in such spaces. We state some results relating range-kernel orthogonality in $C^*$-algebras.
متن کاملOrthogonality preserving mappings on inner product C* -modules
Suppose that A is a C^*-algebra. We consider the class of A-linear mappins between two inner product A-modules such that for each two orthogonal vectors in the domain space their values are orthogonal in the target space. In this paper, we intend to determine A-linear mappings that preserve orthogonality. For this purpose, suppose that E and F are two inner product A-modules and A+ is the set o...
متن کاملNested Krylov Methods and Preserving the Orthogonality
SUMMARY Recently the GMRESR inner-outer iteration scheme for the solution of linear systems of equations has been proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski 1] and Saad (FGMRES) 10]. The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a ne...
متن کاملFidelity Preserving Maps on Density Operators
We prove that any bijective fidelity preserving transformation on the set of all density operators on a Hilbert space is implemented by an either unitary or antiunitary operator on the underlying Hilbert space. Let H be a Hilbert space. The set of all density operators on H, that is, the set of all positive self-adjoint operators on H with finite trace is denoted by C 1 (H). (We note that one m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2005
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.05.008